Gaussian phase-space representations for fermions
نویسندگان
چکیده
منابع مشابه
Gaussian phase-space representations for fermions
We introduce a positive phase-space representation for fermions, using the most general possible multimode Gaussian operator basis. The representation generalizes previous bosonic quantum phase-space methods to Fermi systems. We derive equivalences between quantum and stochastic moments, as well as operator correspondences that map quantum operator evolution onto stochastic processes in phase s...
متن کاملPhase-Space Methods for Fermions
Phase-space representations first arose from the attempt to describe quantum mechanics in terms of distributions over classical variables [1]. For example, Wigner introduced a function of phase-space variables W(x, p) that would classically correspond to a joint-probability distribution: an integration over x gives the marginal distribution for p and vice-versa. However in quantum mechanics, su...
متن کاملGaussian operator bases for correlated fermions
We formulate a general multi-mode Gaussian operator basis for fermions, to enable a positive phase-space representation of correlated Fermi states. The Gaussian basis extends existing bosonic phase-space methods to Fermi systems and thus allows first-principles dynamical or equilibrium calculations in quantum many-body Fermi systems. We prove the completeness of the basis and derive differentia...
متن کاملQuantum phase-space simulations of fermions and bosons
We introduce a unified Gaussian quantum operator representation for fermions and bosons. The representation extends existing phase-space methods to Fermi systems as well as the important case of Fermi–Bose mixtures. It enables simulations of the dynamics and thermal equilibrium states of many-body quantum systems from first principles. As an example, we numerically calculate finite-temperature ...
متن کامل/ 06 08 24 7 v 2 8 Se p 20 06 Quantum many - body simulations using Gaussian phase - space representations
Phase-space representations are of increasing importance as a viable and successful means to study exponentially complex quantum many-body systems from first principles. This paper traces the background of these methods, starting from the early work of Wigner, Glauber and Sudarshan. We focus on modern phase-space approaches using non-classical phase-space representations. These lead to the Gaus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2006
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.73.125112